

Parameter Reference

NONLINEAR LABS GmbH Helmholtzstraße 2-9 E 10587 Berlin Germany

www.nonlinear-labs.de info@nonlinear-labs.de

Document Version: 1.2 Date: May 24, 2022 Author: Matthias Seeber

© NONLINEAR LABS GmbH, 2022, All rights reserved.

Contents

Comment
Legend to signs and symbols
Envelope A
Envelope B
Envelope C
Oscillator A
Shaper A
Oscillator B
Shaper B
Comb Filter
State Variable Filter
Feedback Mixer
Output Mixer
Flanger
Cabinet
Gap Filter
Echo
Reverb
Macros
Hardware Sources
Hardware Amounts
Unison
Master / Scale Group

Comment

This document contains a parameter reference that is not up to date with the parameter extensions of the 2020 Update. Still, we think it will be a useful source of information until the latest version will be integrated into the C15 documentation.

Here a list of new parameters and other changes which are not included in the reference part:

Monophonic Modes

The voice allocation now supports monophonic playing with Lowest, Highest and Last Key priority, four different Legato modes and an adjustable Glide time. (Up to 24 unison voices can be layered.)

Six Macro Controls

The four existing MacroControls (A, B, C, D) are extended by E and F. All six Macros are also available in the MCView, a 2-D control surface for touch screens.

More Modulation Targets

Additional parameters (e.g. the Oscillator Phases) can be assigned to the MacroControls.

New Parameters

- Envelope A/B: Velocity amounts for the Decay 1 and Decay 2 times
- Envelope A/B: Elevate can raise the Breakpoint and Sustain levels for the timbre or the amplitude of an oscillator.
- Envelope C: Retrigger Hardness can control the starting point of mono voices
- Oscillator A/B: Reset can be disabled for free-running mode
- Tremolo effect as an extension of the Flanger
- Dual mode: Volume and Tune for Part **I** and **II**
- Layer mode: Fade From (key), Fade Range
- Feedback Mixer: more inputs for cross routing in LayerMode
- Output Mixer: signal split to both Dual mode effect chains
- Individual smoothing times for the six MacroControls
- Setting: Adjustable tuning reference: 440 +/-40 Hz

Extended Parameter Ranges and Resolutions

- Unison with up to 24 voices (before: 12)
- Bipolar Level Velocity amounts (for velocity crossfades)

Legend to signs and symbols

For some parameters at the lower or upper end of their range the value will get infinite and will be replaced by "-inf" or "inf".

	Unit Reference
%	Amount-like parameters often use a normalized value range in percent (%), spanning from zero (or -100, when the parameter is bipolar) to 100 percent.
sm	Time-relevant parameters indicate their values in milliseconds (ms), meaning that 1000 ms equal one second.
st	Pitch-relevant parameters indicate their values in semitones (st). The interval of one semitone corresponds to two consecutive keys (at default key tracking). 12 semitones equal one octave.
t	The Scale Offset parameters are also pitch-relevant, but show their values in cents (ct), offering more precision. 100 cents correspond to one semitone.
dB	Gain-relevant parameters show their values in decibel (dB), the common format of representing signal levels. Zero decibel correspond to 100 % signal, and a difference of 6 dB approaches a doubling of the signal.
dB_T	Attack and Release Velocity parameters come with a custom time-re- lated format in decibel (dB_T). A full velocity will decrease the corresponding Envelope segment time by the indicated value in dB (6 dB approaching 50 % of the given time).
dB/st	Envelope Level Key Track parameters come with a custom gain-related format in decibel per semitone (dB/st). The corresponding gain will change according to the played key by the given amount of decibel per semitone.
Hz	The Flanger Rate parameter indicates its values in Hertz (Hz), the number of oscillations per second.
deg	Phase-related parameters indicate their values in degrees (deg), mean- ing that 360 degrees correspond to a full circle.

Scaling Types	Most parameters have a continuous, linear scaling type. This type is suitable when the displayed value is directly proportional to the control position and precision remains constant for the whole value range.	Envelope times and the Comb Filter Decay time have an exponential scaling type, covering a wide value range with decreasing precision. The displayed value doesn't rise by a constant value, but rather by a factor (20 per quarter).	Some parameters (effect times for example) have a parabolic scaling type instead of being linear. The displayed value is proportional to the square of the control position in this case. The resulting behaviour of the parameter feels more realistic as if it would use linear scaling.	The Mixer and Main Output levels come with a parabolic gain scaling type and show their value in decibels (dB). At minimum, they will mute the signal, at the center position, they will not affect the signal at all and at maximum, they will amplify the signal by 12 dB (~400%).	Non-continuous parameters with discrete values (such as Unison Voices and Scale Base Key) come with the integer scaling type. This is suitable for sufficiently low value ranges and results in a switch-like behaviour. The fine mode is not effective in this case.
l	linear	exponential	parabolic	parabolic (gain)	integer

		Envelope A
Attack Time	ms %	Time of the (polynomial) Attack segment in milliseconds.
Attack Velocity 30.0 15.0 0.0 -45.0 60.0	dB_T linear 60 (600) steps	Velocity influence on the Attack time. The value represents the logarithmic amount of the reduction of the Attack time by high Note-On velocities.
Attack Curve	% linear 200 (2000) steps	Curvature of the (polynomial) Attack segment. (negative: decelerating slope, zero: linear, positive: acceler- ating slope)
Decay 1 Time 40.0 2.00 0.000 118 800 16000	ms %	Time of the first (linear) Decay segment in milliseconds.
Breakpoint Level	% % linear 100 (1000) steps	Level of the Breakpoint between the two Decay segments.
Decay 2 Time 40.0 2.00 0.000 1290 800 16000	ms %	Time of the second (exponential) Decay segment in millisec- onds.

Envelope A Parameter Reference ∞

Sustain Level	% % ↓ ↓ ↓ </th <th>Sustain level (target of the second Decay segment).</th>	Sustain level (target of the second Decay segment).
Release Time 40.0 2.00 0.000 60.8 800 16000 inf	ms % exponential 100 (1000) steps	Time of the (exponential) Release segment in milliseconds (infinite at maximum).
Release Velocity 30.0 15.0 0.0 0.0 0.0	dB_T linear 60 (600) steps	Velocity influence on the Release time. The value represents the logarithmic amount of the reduction of the Release time by high Note-Off velocities.
30.0 15.0 0.0 30.0 45.0 60.0 30.0	dB linear 60 (600) steps	Influence of the key velocity on the peak, breakpoint and sustain levels of the envelope [maximum dynamic range in dB].
Level Key Trk 0.000 -0.500 -0.500 -1.000 -0.500 1.000	dB/st linear 200 (2000) steps	Key tracking of the envelope's peak, breakpoint and sustain levels [dB per semitone]. Positive values: higher levels for higher notes (+1.0 = +12 dB per octave). Negative values: lower levels for higher notes (-1.0 = -12 dB per octave). Origin at C3 = 60 semitones.
Time Key Trk 50.0 25.0 0.0 5.0 75.0 100.0	% linear 100 (1000) steps	Key tracking of the attack, decay and release times. The value determines how much shorter the times get for higher notes.

Gain [in dB] of the envelope signal. As this signal modulates the Oscillator and Shaper A, the Gain influences the level and the amount of phase modulation and distortion.

		Envelope B
Attack Time	ms %	Time of the (polynomial) Attack segment in milliseconds.
2.00 800 0.000 16000	<i>exponential</i> 100 (1000) steps	
Attack Velocity 30.0 15.0 0.0 -45.0 60.0 0.0	dB_T linear 60 (600) steps	Velocity influence on the Attack time. The value represents the logarithmic amount of the reduction of the Attack time by high Note-On velocities.
Attack Curve	% linear 200 (2000) steps	Curvature of the (polynomial) Attack segment. (negative: decelerating slope, zero: linear, positive: acceler- ating slope)
Decay 1 Time 40.0 2.00 800 0.000 16000 118	ms %	Time of the first (linear) Decay segment in milliseconds.
Breakpoint Level	% % linear 100 (1000) steps	Level of the Breakpoint between the two Decay segments.

Decay 2 Time 40.0 2.00 0.000 16000 1290	ms %	Time of the second (exponential) Decay segment in milliseconds.
Sustain Level	% % <i>k</i> → <i>k</i> →	Sustain level (target of the second Decay segment).
Release Time 40.0 2.00 - 800 0.000 - 16000 16000 inf	ms % exponential 100 (1000) steps	Time of the (exponential) Release segment in milliseconds (infinite at maximum).
Release Velocity 30.0 15.0 0.0 -45.0 60.0 0.0	dB_T linear 60 (600) steps	Velocity influence on the Release time. The value represents the logarithmic amount of the reduction of the Release time by high Note-Off velocities.
30.0 15.0 0.0 30.0 45.0 60.0 30.0	dB linear 60 (600) steps	Influence of the key velocity on the peak, breakpoint and sustain levels of the envelope [maximum dynamic range in dB].
Level Key Trk 0.000 -0.500 -0.500 -1.000 -0.500 0.000	dB/st linear 200 (2000) steps	Key tracking of the envelope's peak, breakpoint and sustain levels [dB per semitone]. Positive values: higher levels for higher notes (+1.0 = +12 dB per octave). Negative values: lower levels for higher notes (-1.0 = -12 dB per octave). Origin at C3 = 60 semitones.

Envelope B

Parameter Reference 10

100 (1000) steps

118

Key tracking of the attack, decay and release times. The

Breakpoint Level	% % inear 200 (2000) steps	Level of the Breakpoint between the two Decay segments.
Decay 2 Time 40.0 2.00 800 0.000 16000 1290	ms %	Time of the second (exponential) Decay segment in millisec- onds.
Sustain Level -50.0 - 50.0 -100.0 - 100.0 0.0	% % ↓ ↓ ↓ </th <th>Sustain level (target of the second Decay segment).</th>	Sustain level (target of the second Decay segment).
Release Time 40.0 2.00	ms %	Time of the (exponential) Release segment in milliseconds (infinite at maximum).
Release Velocity 30.0 15.0 0.0 60.0 0.0	dB_T linear 60 (600) steps	Velocity influence on the Release time. The value represents the logarithmic amount of the reduction of the Release time by high Note-Off velocities.
Level Velocity 30.0 15.0 0.0 30.0 45.0 60.0 30.0	dB linear 60 (600) steps	Influence of the key velocity on the peak, breakpoint and sustain levels of the envelope [maximum dynamic range in dB].

Envelope C

Parameter Reference

13

Time Key Trk

14

Drive - Env A 50.0 25.0 - 75.0 0.0 - 100.0 0.0	% linear 100 (1000) steps	Envelope (A) amount for the Drive factor. At zero, the gain stays constant, at higher values, the enve- lope applies a time-variant attenuation.
Fold 50.0 25.0 0.0 50.0 75.0 100.0 50.0	% <i>linear</i> 100 (1000) steps	Amount of folding back of the shaper curve for high input amplitudes. 0.0 %: flat saturation, no folding 100 %: fully folded back (periodic sine curve) A higher amount of folding leads to a softer but more nasal sound.
Asymetry 50.0 25.0 0.0 0.0 0.0 0.0	% <i>linear</i> 100 (1000) steps	Asymmetry of the shaper curve, generating even (2nd, 4th,) harmonics. At higher values it becomes a parabolic curve that shifts the frequency of the fundamental to its double.
Mix -50.0 - 50.0 -100.0 - 100.0	% % ★ <i>linear</i> 200 (2000) steps	Mix amount of Shaper A in the signal sent to the Filters and to the Output Mixer. At zero, it is the input signal of the Shaper - behind FB Mix. At negative values, the signal from the Shaper is inverted.
FB Mix 50.0 25.0 0.0 100.0 0.0	% % Imear 100 (1000) steps	Crossfades between Oscillator & Shaper A (at zero) and the Feedback signal for the signal A.
FB - Env C 50.0 25.0 0.0 -75.0 100.0 0.0	% linear 100 (1000) steps	Envelope (C) amount for the Feedback Mix. At zero, only a Gate signal is applied, at higher values, Envelope C is faded in.

Shaper A

Parameter Reference

17

Shaper A

Parameter Reference 16

50.0

linear 100 (500) steps

0.0

10.0

0.0

- 100.0

linear 100 (1000) steps

Oscillator B Pitch Pitch (logarithmic frequency) of Oscillator B at C3 (MIDI note 60) [in semitones, based on MIDI note numbers]. 55.00 The range below zero is shaped in the way that -20 corre-17.50 92.50 sponds to 0 Hz. -20.00 130.00 linear 150 (15000) steps 60.00 Pitch - Env C Amount of pitch modulation by Envelope C [in semitones]. 0.00 -40.00 40.00 - 80.00 -80.00 linear 160 (16000) steps 0.00 Pitch - Kev Trk Key tracking of the oscillator pitch. It's the scaling factor between the key position (relative to C3 = 60 semitones) and 52.50 the pitch of the oscillator. At 100.0 %, the pitch follows the - 78.75 26.25 equal-tempered scale. At values slightly larger than 100.0 %, the tuning will be stretched. At 50.0 %, a quartertone scale - 105.00 0.00 linear emerges and at 0.0 %, the pitch is constant for all keys. 105 (10500) steps 100.00 Fluctuation Fluctuation of the oscillator frequency. If the parameter is set larger than 0.0 %, the frequency is 50.0 changed at the beginning of each oscillation period by 25.0 75.0 a random amount. At 100.0 %, the maximum frequency variation is +/- 95 %. 0.0 - 100.0 linear 100 (1000) steps 0.0 Fluct - Env C Amount of modulation of the frequency fluctuation by Envelope C. At zero, the modulation stays constant, at 50.0 higher values, the envelope applies a time-variant attenu-25.0 75.0 \bigcirc ation.

tors & Shapers.

Mix amount of the ring modulation between both Oscilla-

Shaper B

Parameter Reference

Fold % Amount of folding back of the shaper curve for high input amplitudes. 0 50.0 0.0 50.0 0.0 50.0 0.0 50.0 100 (1000) steps Asymetry % Asymetry % 0.0 50.0 0.0<			
 Asymitaty of totate, starting totating etclaring etcl	50.0 25.0		amplitudes. 0.0 %: flat saturation, no folding 100 %: fully folded back (periodic sine curve) A higher amount of folding leads to a softer but more nasal
and underformed spin best of the signal of the Shaper - behind FB Mix. At zero, it is the input signal of the Shaper - behind FB Mix. At zero, it is the input signal from the Shaper is inverted. FB Mix % % % 50.0 25.0 0.0 1000 (1000) steps Crossfades between Oscillator & Shaper B (at zero) and the Feedback signal for the signal B. FB Mix % % % 25.0 0.0 1000 (1000) steps Envelope (C) amount for the Feedback Mix. At zero, only a Gate signal is applied, at higher values, Envelope C is faded in. 25.0 0.0 0.0 100 (1000) steps Mix amount of the ring modulation between both Oscillator & Shapers.	50.0 25.0 - 75.0 0.0 - 100.0	linear) harmonics. At higher values it becomes a parabolic curve
FB - Env C 25.0 0	-50.0 -100.0 - 50.0 -100.0 - 100.0		and to the Output Mixer. At zero, it is the input signal of the Shaper - behind FB Mix. At negative values, the signal from
50.0 Gate signal is applied, at higher values, Envelope C is faded in. 25.0 75.0 0.0 100.0 1000 (1000) steps Ring Mod % 50.0 100.0 25.0 75.0 1000 (1000) steps Mix amount of the ring modulation between both Oscillators & Shapers.	FB Mix	% % 🔆	Crossfades between Oscillator & Shaper B (at zero) and the
50.0 25.0 - 75.0 0.0 - 100.0 linear 100 (1000) steps	25.0 - 75.0		
	25.0 - 75.0 0.0 - 100.0 FB - Env C 25.0 - 75.0 0.0 - 75.0 100.0	100 (1000) steps	Feedback signal for the signal B. Envelope (C) amount for the Feedback Mix. At zero, only a Gate signal is applied, at higher values, Envelope C is faded

		Comb Filter
A - B 50.0 25.0 0.0 - 75.0 100.0 0.0	% % <i>linear</i> 100 (1000) steps	The signal for the Comb Filter as a crossfade between the outputs of Oscillator & Shaper A and Oscillator & Shaper B.
Pitch 30.00 90.00 0.00	st st linear 120 (12000) steps	Coarse pitch of the Comb Filter (delay) at C3 (MIDI note 60) [in semitones, based on MIDI note numbers].
Pitch - Env C -40.00 - 40.00 -80.00 - 80.00	st <i>linear</i> 160 (16000) steps	Amount of modulation of the Comb Filter pitch by Envelope C [in semitones].
Pitch - Key Trk 52.50 26.25 0.00 105.00	% linear 105 (10500) steps	Key scaling of the tuning of the Comb Filter (delay). 0.0 %: same tuning for all keys 100.0 %: full tracking with keys, origin at C3 = 60 semitones
Decay -316 - 316 -100000 - 100000 0.000	ms % 🔆	Amount of the internal feedback noticeable as the decay time of the impulse response [logarithmic scaling]. At negative values, the feedback signal is inverted, which shifts the fundamental resonance down by one octave.
Decay - Gate 50.0 25.0 - 75.0 0.0 - 100.0 0.0	% % <i>linear</i> 100 (1000) steps	Amount of gating applied to the decay time. It reduces the decay time when the key is released (Note-off). 0.0 % same decay time in the release phase 100.0 %: the decay time is set to zero at the release of the key

Decay - Key Trk 50.0 25.0 0.0 33.3	% <i>linear</i> 100 (1000) steps	Key scaling of the decay time. 0.0 %: equal time for all keys 100.0 %: shortening to half time per octave, origin at C3 = 60 semitones
Allpass - Tune 70.0 35.0 0.0 140.0	st st linear 140 (1400) steps	Center frequency of the 2-pole allpass filter [in semitones]. It is the frequency where the phase is shifted by 180 degrees. The allpass is in series with the delay. At the maximum position (140 semitones), the allpass has no effect.
Allpass - Env C	st <i>linear</i> 160 (1600) steps	Amount of modulation of the allpass center frequency by Envelope C [in semitones].
Allpass - Key Trk	% linear 100 (1000) steps	Key scaling of the allpass filter frequency. 0.0 %: same tuning for all keys 100.0 %: full tracking with the keys, origin at C3 = 60 semitones
Allpass - Reson 50.0 25.0 0.0 50.0 100.0 50.0	% % inear 100 (1000) steps	Resonance of the 2-pole allpass. Determines how much the phase shift increases around the center frequency.
Hi Cut 90.0 65.0 40.0 140.0 140.0	st st linear 100 (1000) steps	Cutoff frequency [in semitones] of the lowpass filter that damps the higher frequencies in the comb filter's signal path.

Comb Filter

	Sta	te Variable Filter
A - B 50.0 25.0 0.0 0.0 0.0 0.0	% %	The signal for the State Variable Filter as a crossfade between the outputs of Oscillator & Shaper A and Oscillator & Shaper B.
Comb Mix 0.0 -50.0 -100.0 0.0 -50.0 -100.0	% % √ √ linear 200 (2000) steps	The input signal for the State Variable Filter as mix of the sig- nals from the A-B mixer and from the Comb Filter. Negative mix amounts will create different Comb Filter (cancellation) effects.

Cutoff 50.0	st st linear 120 (1200) steps	Static value of the filter cutoff frequency at C3 [in semi- tones], applies to both stages of the filter. The offsets between their individual cutoffs is controlled by "Spread".
Cutoff - Env C -50.0 - 50.0 -100.0 - 100.0 0.0	st <i>linear</i> 200 (2000) steps	Amount of cutoff modulation by Envelope C [in semitones].
Cutoff - Key Trk 50.0 25.0 0.0 100.0	% linear 100 (1000) steps	Key scaling of the filter cutoffs. 0.0 %: no influence 100.0 %: full tracking with the keys, origin at C3 = 60 semitones
Resonance 50.0 25.0 0.0 50.0 100.0 50.0	% % linear 100 (1000) steps	Amount of filter resonance, creating peaks at the cutoff frequencies.
Reson - Env C -50.0 - 50.0 -100.0 - 100.0 0.0	% linear 200 (2000) steps	Amount of resonance modulation by Envelope C.
Reson - Key Trk	st <i>linear</i> 200 (2000) steps	Key scaling of the filter resonance. 0.0 %: no influence 100.0 %: full tracking with the keys, origin at C3 = 60 semitones

200 (2000) steps

0.0

SV Filter -50.0 - 50.0 -100.0 - 100.0 0.0	% %	Feedback mix factor for the output of the State Variable Filter.
Effects -50.0 - 50.0 -100.0 - 100.0 0.0	% % ¥ <i>linear</i> 200 (2000) steps	Feedback mix factor for the output of the Effects chain. The reverb amount in the feedback can be set by the "Reverb Amount" fader independantly. Since the signal is mono- phonic, such feedback will cause intermodulation between the voices.
Reverb Amount 50.0 25.0 0.0 50.0 75.0 100.0 50.0	% % inear 100 (1000) steps	Controls the amount of reverb in the feedback indepen- dantly from the Mix in the Reverb section. 0.0 %: dry, no reverb signal 50.0 %: mix of 50 % dry and 50 % wet signal 100.0 %: wet, 100 % reverb signal
25.0 12.5	dB dB	Input gain [in dB] of the sine shaper stage. Higher gains will create more distortion and harmonics.
Fold 50.0 25.0 0.0 50.0 75.0 100.0 50.0	% linear 100 (1000) steps	Amount of folding back of the shaper curve for high input amplitudes. 0.0 %: flat saturation, no folding 100.0 %: fully folded back (periodic sine curve) A higher amount of folding leads to a softer but more nasal sound.
Asymetry 50.0 25.0 0.0 -75.0 100.0 0.0	% linear 100 (1000) steps	Asymmetry of the shaper curve, generating even (2nd, 4th,) harmonics. At higher values, it becomes a parabolic curve that shifts the frequency of the fundamental to its double.

27

Feedback Mixer

Comb - Level	% % 🔆	Output mix factor for the signal from the Comb Filter.
Comb - Pan 0.0 -50.0 -50.0 -100.0 0.0 -50.0 -50.0 -50.0 -50.0 -0.0 -50.0 -0.0 -50.0 -0.0 -50.0 -0.0 -50.0 -0	% <i>linear</i> 200 (2000) steps	Pan position of the signal from the Comb Filter in the output mix.
SV Filter - Level	% %	Output mix factor for the signal from the State Variable Filter.
SV Filter - Pan 0.0 -50.0	% linear 200 (2000) steps	Pan position of the signal from the State Variable Filter in the output mix.
Drive 25.0 12.5 0.0 - 50.0 0.0	dB dB	Input gain [in dB] of the sine shaper stage. Higher gains will create more distortion and harmonics.
Fold 50.0 25.0 0.0 50.0 100.0 50.0	% <i>linear</i> 100 (1000) steps	Amount of folding back of the shaper curve for high input amplitudes. 0.0 %: flat saturation, no folding 100.0 %: fully folded back (periodic sine curve) A higher amount of folding leads to a softer but more nasal sound.

Timems%12.5 0.0012.5 parabolic 125 (1250) stepsMean value of the delay times in the left and right channel. The "Stereo" parameter allows to create a time offset between the channels. When the time of the Flanger is set to zero, the overall effect is determined by the phase shifting of the allpass.Stereo%0.0 -25.0 -50.0%Stereo%0.0 -25.0 -50.0%Stereo%0.0 -25.0 -50.0%Sets the ratio between the delay times of the left and of the right channel (the value shows the offset to 100.0 %). In the center position, the offset is zero and both delay times are equal.Allpass Mod%96%50.0 -0.0 -0.0%100 (1000) stepsAllpass Tune\$51 -100.0 -100.0%100 (2000) stepsAllpass Tune\$51 -100.0 -100.0100 (1000) stepsAllpass Tune\$51 -100.0 -100.0100 (1000) steps100 (1000) steps<	Time Mod 0.000 -25.0 - 25.0 -100 - 100 0.000	% % parabolic 200 (2000) steps	Relative amount of the modulation of the delay times by the LFO and/or the envelope.
be defined the observe of the three defined on the offset to 100.0 %]. In the center position, the offset is zero and both delay times are equal. Allpass Mod % % % Relative amount of the modulation of the allpass center frequencies by the LFO and/or the envelope. The allpass creates the effect of a phaser. Allpass Tune st st $\frac{1}{1000} \frac{1}{10000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{10000000000} \frac{1}{10000000000000000000000000000000000$	12.5 3.14 - 28.2 0.000 - 50.0	parabolic	The "Stereo" parameter allows to create a time offset between the channels. When the time of the Flanger is set to zero, the overall effect
 Allpass Tune st st inear 200 (2000) steps Allpass Tune st st inear 200 (2000) steps Allpass Tune st st inear 200 (2000) steps Mean center frequency of the 4-pole allpass filters which are in series with the delays. Their frequency-dependant phase shifts can create a "Phaser" effect. The phase shift is minimized by setting this control to its maximum. When the time of the flanger is set to zero, the allpass becomes the dominant part. Feedback % % Amount of the internal feedback. At negative values, the feedback is inverted and will emphasize other frequencies than in the non-inverted mode. 	-25.0 25.0		right channel [the value shows the offset to 100.0 %]. In the center position, the offset is zero and both delay times are
70.0 are in series with the delays. Their frequency-dependant phase shifts can create a "Phaser" effect. The phase shift is minimized by setting this control to its maximum. When the time of the flanger is set to zero, the allpass becomes the dominant part. Feedback % 0.0 0.0 -50.0 0.0 -100.0 0.0 -100.0 0.0 -100.0 0.0 -100.0 0.0 -200 (2000) steps Amount of the internal feedback. At negative values, the feedback is inverted and will emphasize other frequencies than in the non-inverted mode.	-50.0 - 50.0 -100.0 - 100.0		frequencies by the LFO and/or the envelope. The allpass
-50.0 -100.0 -100.0 -100.0 -100.0 -100.0 -50.0 -100.0 -50.0 -100.0 -50.0 -100.0 -50.0 -50.0 -100.0 -50.0 -50.0 -100.0 -50.0 -100.0 -50.0 -100.0 -50.0 -50.0 -100.0 -50.0 -100.0 -50.0 -100.0 -50.0 -50.0 -100.0 -50.0	70.0 35.0 105.0 0.0 140.0		are in series with the delays. Their frequency-dependant phase shifts can create a "Phaser" effect. The phase shift is minimized by setting this control to its maximum. When the time of the flanger is set to zero, the allpass becomes the
	-50.0 - 50.0 -100.0 - 100.0		feedback is inverted and will emphasize other frequencies

0.0

25.0

100.0

linear

100 (1000) steps

Gap Filter

Mean delay time [in milliseconds]. (As there can be an offset between the left and right channel, this control shows the mean time.)

Stereo -16.5 -33.0 0.0 16.5 -33.0	% % Inter 132 (1320) steps	Sets the ratio between the delay times of the left and of the right channel [the value shows the offset to 100.0 %]. In the center position, the offset is zero and both delay times are equal.
Feedback 50.0 25.0 0.0 50.0 100.0 50.0	% % <i>linear</i> 100 (1000) steps	Amount of internal feedback.
Cross FB 50.0 25.0 0.0 50.0 75.0 100.0 50.0	% <i>linear</i> 100 (1000) steps	Amount of the cross feedback between the left and right channel. 0.0 %: no cross feedback 100.0 %: all feedback is cross feedback
Hi Cut 100.0 80.0 60.0 120.0 140.0 120.0	st linear 80 (800) steps	Cutoff frequency [in semitones] of the filter that damps the higher frequencies of the delayed signal.
Mix 50.0 25.0 0.0 -75.0 100.0 0.0	% % Image: 100 (1000) steps	Crossfades between the dry signal and the delayed signal.
		Reverb

Reverb

36

Macros

Ribbon 1

50.0

This control is the parameter representation of the "Ribbon 1" Hardware Source. It will directly follow the Ribbon and vice versa. If the source's return behavior is set to "Center", the parameter will be bipolar.

<u>د</u> 39

Hardware Amounts

Parameter Reference

40

Determines the influence of the "Pedal 2" Hardware Source on Macro Control A. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control B. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control C. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control D. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 3" Hardware Source on Macro Control A. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 3" Hardware Source on Macro Control B. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 3" Hardware Source on Macro Control C. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 3" Hardware Source on Macro Control D. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 4" Hardware Source on Macro Control A. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 4" Hardware Source on Macro Control B. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 4" Hardware Source on Macro Control C. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Pedal 4" Hardware Source on Macro Control D. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Hardware Amounts

Parameter Reference

Bend to (A) -50.0 -50.0 -100.0 -100.0 0.0	% <i>linear</i> 200 (2000) steps	Determines the influence of the "Bender" Hardware Source on Macro Control A. The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % 100.0 %).
Bend to (B) 0.0 -50.0 -50.0 -100.0 -50.0 0.0	% linear 200 (2000) steps	Determines the influence of the "Bender" Hardware Source on Macro Control B. The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % 100.0 %).
Bend to (C) 0.0 -50.0 -100.0 0.0 -50.0 100.0	% <i>linear</i> 200 (2000) steps	Determines the influence of the "Bender" Hardware Source on Macro Control C. The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % 100.0 %).
Bend to (D) -50.0 - 50.0 -100.0 - 100.0	% linear 200 (2000) steps	Determines the influence of the "Bender" Hardware Source on Macro Control D. The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % 100.0 %).
-50.0 - 50.0		on Macro Control D. The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both

Hardware Amounts

Parameter Reference

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control A. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control B. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control C. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control D. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 % ... 100.0 %).

Spreading of the pitches of the unison voices [in semitones].

Master / Scale

Parameter Reference

45

Master / Scale Group Volume Master volume [in dB], applied at the end of the effect chain, before the soft clipper. 0.000 -12.0 7.04 -108 -(parabolic) gain 12.0 100 (1000) steps 0.000 Tune Global pitch transposition [in semitones]. 0.00 -24.00 24.00 - 48.00 -48.00 linear 96 (9600) steps 0.00 Base Key Sets the base key for the custom scale. The scale is defined for the eleven keys above the base key and will be applied to all octaves accordingly. G# В integer 12 (12) steps Offset +1 Offset of the first key following the base key [in cents]. At zero, the interval to the base key would be the minor 0.0 second of the equally tempered scale. -400.0 400.0 -800.0 -800.0 linear 1600 (16000) steps

Unison

47

Master / Scale