~ nonlinearlabs

C15

Parameter Reference

\sim
 NONLINEARLABS

NONLINEAR LABS GmbH
Helmholtzstraße 2-9 E
10587 Berlin
Germany
www.nonlinear-labs.de
info@nonlinear-labs.de

Document Version: 1.2
Date: May 24, 2022
Author: Matthias Seeber

Contents

Comment 5
Legend to signs and symbols 6
Envelope A 8
Envelope B 10
Envelope C 12
Oscillator A. 14
Shaper A 16
Oscillator B. 18
Shaper B 20
Comb Filter 22
State Variable Filter 24
Feedback Mixer 26
Output Mixer. 28
Flanger 30
Cabinet 32
Gap Filter 33
Echo. 34
Reverb 35
Macros 36
Hardware Sources 38
Hardware Amounts 39
Unison 44
Master / Scale Group 45

Comment

This document contains a parameter reference that is not up to date with the parameter extensions of the 2020 Update. Still, we think it will be a useful source of information until the latest version will be integrated into the C 15 documentation.

Here a list of new parameters and other changes which are not included in the reference part:

Monophonic Modes

The voice allocation now supports monophonic playing with Lowest, Highest and Last Key priority, four different Legato modes and an adjustable Glide time. (Up to 24 unison voices can be layered.)

Six Macro Controls

The four existing MacroControls $(\boldsymbol{A}, \boldsymbol{B}, \mathbf{C},(\mathbf{D})$ are extended by $(\mathbf{E}$ and \boldsymbol{F}
All six Macros are also available in the MCView, a 2-D control surface for touch screens.

More Modulation Targets

Additional parameters (e.g. the Oscillator Phases) can be assigned to the MacroControls.

New Parameters

- Envelope A/B: Velocity amounts for the Decay 1 and Decay 2 times
- Envelope A/B: Elevate can raise the Breakpoint and Sustain levels for the timbre or the amplitude of an oscillator
- Envelope C: Retrigger Hardness can control the starting point of mono voices
- Oscillator A/B: Reset can be disabled for free-running mode
- Tremolo effect as an extension of the Flanger
- Dual mode: Volume and Tune for Part I and II
- Layer mode: Fade From (key), Fade Range
- Feedback Mixer: more inputs for cross routing in LayerMode
- Output Mixer: signal split to both Dual mode effect chains
- Individual smoothing times for the six MacroControls
- Setting: Adjustable tuning reference: $440+/-40 \mathrm{~Hz}$

Extended Parameter Ranges and Resolutions

- Unison with up to 24 voices (before: 12)
- Bipolar Level Velocity amounts (for velocity crossfades)

Gain [in dB$]$ of the envelope signal. As this signal modulates the Oscillator and Shaper A, the Gain influences the level and the amount of phase modulation and distortion.

Envelope B

Attack Curve

Decay 1 Time

Breakpoint Level

Velocity influence on the Attack time. The value represents the logarithmic amount of the reduction of the Attack time by high Note-On velocities.

Curvature of the (polynomial) Attack segment. (negative: decelerating slope, zero: linear, positive: accelerating slope)

Time of the first (linear) Decay segment in milliseconds.

Level of the Breakpoint between the two Decay segments.

Time Key Trk

Key tracking of the attack, decay and release times. The value determines how much shorter the times get for higher notes

Gain [in dB] of the envelope signal. As this signal modulates the Oscillator and Shaper B, the Gain influences the level and the amount of phase modulation and distortion.

Envelope C

Attack Curve

Decay 1 Time

ms
Velocity influence on the Attack time. The value represents the logarithmic amount of the reduction of the Attack time by high Note-On velocities

Curvature of the (polynomial) Attack segment (negative: decelerating slope, zero: linear, positive: accelerating slope)

Time of the first (linear) Decay segment in milliseconds
Time of the (polynomial) Attack segment in milliseconds.

Level Key Trk

PM B - Env B
PM B - Shaper
PM FB
PM FB - Env C
At zero, the modulation stays constant, at higher values, the
envelope applies a time-variant attenuation.

\% \% 空

Mix amount of the ring modulation between both Oscillators \& Shapers.

Oscillator B

Key tracking of the oscillator pitch. It's the scaling factor between the key position (relative to $\mathrm{C}=60$ semitones) and the pitch of the oscillator. At 100.0%, the pitch follows the equal-tempered scale. At values slightly larger than 100.0%, the tuning will be stretched. At 50.0%, a quartertone scale emerges and at 0.0%, the pitch is constant for all keys.

| Fluctuation | $\%$ | $\%$ | Fluctuation of the oscillator frequency.
 If the parameter is seil larger than 0.0%, the frequency is
 changed at the beginning of each oscillation period by
 a random amount. At 100.0%, the maximum frequency |
| :--- | :--- | :--- | :--- | :--- |
| variation is $+/-95 \%$. | | | |

Start phase [in degrees]. The Oscillator will be set to this phase position with each Note-On.

Amount of phase modulation by Oscillator \& Shaper B (local feedback).

Envelope (B) amount for the phase modulation by Oscillator \& Shaper B (local feedback).
At zero, the modulation stays constant, at higher values, the envelope applies a time-variant attenuation.

PM Self - Shaper

PM A

| PM A - Env A | $\%$ | | \square |
| :--- | :--- | :--- | :--- | \& Shaper A (cross feedback)

At zero, the modulation stays constant, at higher values, the envelope applies a time-variant attenuation.
PM A - Shaper
PM FB
Phirp
PB - Env C
modulation (A $->$ B). At zero, the output signal of Oscillator
A is used. At negative values, the signal from the Shaper is
inverted.

Shaper B

State Variable Filter

Cutoff	st st	Static value of the filter cutoff frequency at C 3 [in semitoness, applies to both stages of the filter. The offsets between their individual cutoffs is controlled by "Spread".
Cutoff-Env C	st	Amount of cutoff modulation by Envelope C [in semitones].
		Key scaling of the filter cutoffs. 0.0 \%: no influence 100.0 \%: full tracking with the keys, origin at C3 $=60$ semitones
	$\underset{\substack{\text { linear } \\ 100(1000) \text { steps }}}{\%}$	Amount of filter resonance, creating peaks at the cutoff frequencies.
		Amount of resonance modulation by Envelope C.
		Key scaling of the filter resonance. 0.0 \%: no influence 100.0 \%: full tracking with the keys, origin at C3 $=60$ semitones

Spread

Feedback Mixer

Filter

linear 100 (1000) steps

linear

$$
\begin{aligned}
& \text { inear } \\
& 100 \text { (1000) steps }
\end{aligned}
$$

Asymetry

Feedback mix factor for the output of the Effects chain. The reverb amount in the feedback can be set by the "Reverb Amount" fader independantly. Since the signal is monophonic, such feedback will cause intermodulation between the voices.

Controls the amount of reverb in the feedback independantly from the Mix in the Reverb section.
0.0 \%: dry, no reverb signal
50.0 \%: mix of 50 \% dry and 50 \% wet signa
100.0 \%: wet, 100 \% reverb signal

Input gain [in dB] of the sine shaper stage. Higher gains will create more distortion and harmonics

Amount of folding back of the shaper curve for high input amplitudes.
0.0 \%: flat saturation, no folding
100.0 \%: fully folded back (periodic sine curve)

A higher amount of folding leads to a softer but more nasal sound.

Asymmetry of the shaper curve, generating even (2nd, 4th, ...) harmonics. At higher values, it becomes a parabolic curve that shifts the frequency of the fundamental to its double.
Level

Output Mixer

Output mix factor for the signal from Oscillator \& Shaper A.

A - Pan

Output mix factor for the signal from Oscillator \& Shaper A.

Time Mod	\% \%	Relative amount of the modulation of the delay times by the
	 parabolic 200 (2000) steps	LFO and/or the envelope.
Time	 parabolic 125 (1250) steps	Mean value of the delay times in the left and right channel. The "Stereo" parameter allows to create a time offset between the channels. When the time of the Flanger is set to zero, the overall effect is determined by the phase shifting of the allpass.
Stereo	\% linear 100 (1000) steps	Sets the ratio between the delay times of the left and of the right channel [the value shows the offset to 100.0%]. In the center position, the offset is zero and both delay times are equal.
Allpass Mod	 linear 200 (2000) steps	Relative amount of the modulation of the allpass center frequencies by the LFO and/or the envelope. The allpass creates the effect of a phaser.
Allpass Tune	st st linear 140 (1400) steps	Mean center frequency of the 4-pole allpass filters which are in series with the delays. Their frequency-dependant phase shifts can create a "Phaser" effect. The phase shift is minimized by setting this control to its maximum. When the time of the flanger is set to zero, the allpass becomes the dominant part.
Feedback	 linear 200 (2000) steps	Amount of the internal feedback. At negative values, the feedback is inverted and will emphasize other frequencies than in the non-inverted mode.

Gap Filter

Shifts the mean cutoff frequency of both 4-pole filters on both channels up or down [in semitones].
Stereo

Sets the difference between the center frequencies of the left and of the right channel [in semitones].

Offset between the cutoffs of the lowpass and the highpass [in semitones]. Since the two filters are running in parallel and their output signals are mixed, the result of a positive gap is a band rejection. With a negative gap, the pass bands are overlapping so that all frequencies can pass and the resonances emphasize the cutoff frequencies.

Balance between the levels of the ranges above and below the gap.
In the center position both ranges are equally weighted. Negative values boost the lower range and attenuate the higher range, positive values have the opposite effect.

Resonance of both filters. Higher values create two resonance peaks at the upper and lower end of the gap.

Crossfades between the dry signal and the filtered signal. At positive values, the filter runs in parallel (band reject) mode, at negative values, it is a band pass filter (in serial mode).

Echo

Mean delay time [in milliseconds]. (As there can be an offset between the left and right channel, this control shows the mean time.)

Pedal 1

Ped 1 to (A)
Ped 1 to (C) 1 to (B)
Petermines the influence of the "Pedal 1" Hardware Source
on Macro Control A.
If the Pedal is a returning Hardware Source, the amount can
be adjusted continuously, otherwise it will be switch-like.
Continuous amounts can be set [in percent] and can cover
the whole range of the Macro Control in both directions
(-100.0 \% ... 100.0 \%).
\% Determines the influence of the "Pedal 2" Hardware Source on Macro Control A. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control B. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control C. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Determines the influence of the "Pedal 2" Hardware Source on Macro Control D. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Determines the influence of the "Pedal 3 " Hardware Source on Macro Control A. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Determines the influence of the "Pedal 3 " Hardware Source on Macro Control B. If the Pedal is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions $(-100.0 \% \ldots 100.0 \%)$.

Determines the influence of the "Bender" Hardware Source on Macro Control A.
The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0 \%).

Determines the influence of the "Bender" Hardware Source on Macro Control B.
The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0%).

Determines the influence of the "Bender" Hardware Source on Macro Control C
The amount can be adjusted continuously [in percent] and can cover the whole range of the Macro Control in both directions ($-100.0 \% \ldots 100.0 \%$).

Rib 2 to (A)

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control A. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0%).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control B. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0 \%).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control C. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0 \%).

Determines the influence of the "Ribbon 2" Hardware Source on Macro Control D. If the Ribbon is a returning Hardware Source, the amount can be adjusted continuously, otherwise it will be switch-like. Continuous amounts can be set [in percent] and can cover the whole range of the Macro Control in both directions (-100.0 \% ... 100.0%).

Unison

Master / Scale Group

